Kriging-model-based uncertainty quantification in computational fluid dynamics

نویسندگان

  • Soshi Kawai
  • Koji Shimoyama
چکیده

This paper proposes an efficient and accurate non-intrusive uncertainty quantification (UQ) method in computational fluid dynamics (CFD). Emphasis is placed on developing an UQ method that can accurately predict stochastic behaviors of output solution with small number of sampling simulations, and is also accurate for non-smooth output uncertainty responses. The proposed method is based on Kriging surrogate model, and the Kriging function values are used to evaluate output uncertainties robustly even with non-smooth responses, while using both the fit uncertainty and the gradient information of the Kriging predictors for dynamic adaptive sampling. The proposed Kriging-model-based UQ method shows a superior performance in estimating the non-smooth responses of output solution in terms of accuracy and robustness compared to the existing polynomial chaos expansion and the adaptive sampling method based on only the Kriging predictor fit uncertainty. The proposed method is first tested on analytical non-smooth functions under uniform uncertainties, and then applied to the transonic RAE 2822 airfoil flow under normal uncertainties in freestream Mach number by coupling the proposed UQ method with CFD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of stepped planning hull hydrodynamics using computational fluid dynamics and response surface method

The use of step at the bottom of the hull is one of the effective factors in reducing the resistance and increasing the stability of the Planning hull. The presence of step at the bottom of this type of hulls creates a separation in the flow, which reduces the wet surface on the hull, thus reducing the drag on the body, as well as reducing the dynamic trim. In this study, a design space was cre...

متن کامل

A Mixed Uncertainty Quantification Approach Using Evidence Theory and Stochastic Expansions

Uncertainty quantification (UQ) is the process of quantitative characterization and propagation of input uncertainties to the response measure of interest in experimental and computational models. The input uncertainties in computational models can be either aleatory, i.e., irreducible inherent variations, or epistemic, i.e., reducible variability which arises from lack of knowledge. Previously...

متن کامل

Quantification of Uncertainty in Computational Fluid Dynamics

This review covers Verification, Validation, Confirmation and related subjects for computational fluid dynamics (CFD), including error taxonomies, error estimation and banding, convergence rates, surrogate estimators, nonlinear dynamics, and error estimation for grid adaptation vs Quantification of Uncertainty.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014